Manifold Learning for Multi-Modal Image Registration
نویسندگان
چکیده
The standard approach to multi-modal registration is to apply sophisticated similarity metrics such as mutual information. The disadvantage of these measures, in contrast to simple L1 or L2 norm, is the increased computational complexity and consequently the prolongation of the registration time. An alternative approach, which has so far not yet gained much attention in the literature, is to find image representations, so called structural representations, that allow for the direct application of L1 and L2 norm. Recently, entropy images [26] were proposed as a simple structural representation of images for multi-modal registration. In this article, we propose the application of manifold learning, more precisely Laplacian eigenmaps, to learn the structural representation. It has the theoretical advantage of presenting an optimal approximation to one of the criteria for a structural description. Laplacian eigenmaps search for similar patches in high-dimensional patch space and embed the manifold in a low-dimensional space under preservation of locality. This can be interpreted as the identification of internal similarities in images. In our experiments, we show that the internal similarity across images is comparable and notice very good registration results for the new structural representation.
منابع مشابه
Entropy and Laplacian images: Structural representations for multi-modal registration
The standard approach to multi-modal registration is to apply sophisticated similarity metrics such as mutual information. The disadvantage of these metrics, in comparison to measuring the intensity difference with, e.g. L1 or L2 distance, is the increase in computational complexity and consequently the increase in runtime of the registration. An alternative approach, which has not yet gained m...
متن کاملManifold Learning for Medical Image Registration, Segmentation, and Classification
The term manifold learning encompasses a class of machine learning techniques that convert data from a high to lower dimensional representation while respecting the intrinsic geometry of the data. The intuition underlying the use of manifold learning in the context of image analysis is that, while each image may be viewed as a single point in a very high-dimensional space, a set of such points ...
متن کاملLearning the Similarity Measure for Multi-Modal 3D Image Registration
Multi-modal image registration is a challenging problem in medical imaging. The goal is to align anatomically identical structures, however, their appearance in images acquired with different imaging devices, such as for example CT or MR, may be very different. Registration algorithms generally try to deform one image, the floating image, such that it matches with a second, the reference image,...
متن کاملOptimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps
Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...
متن کاملLearning Based Non-rigid Multi-modal Image Registration Using Kullback-Leibler Divergence
The need for non-rigid multi-modal registration is becoming increasingly common for many clinical applications. To date, however, existing proposed techniques remain as largely academic research effort with very few methods being validated for clinical product use. It has been suggested by Crum et al. that the context-free nature of these methods is one of the main limitations and that moving t...
متن کامل